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Announcements!
● Read the Weekly Post

● We have caught academic misconduct cases

● HW 2 and Vitamin 2  have been released, due Thu (grace period Fri)

● Throughout this lecture definitions will be underlined
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Minimum Edges for Connectivity
Theorem: Any connected graph with n vertices must have at least n-1 edges
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Complete Graphs
A graph G is complete if it contains the maximum number of edges possible.
Correction: K is for mathematician Kazimierz Kuratowski
Examples: 
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Trees
The following definitions are all equivalent to show that a graph G is a tree. 
1. G is connected and contains no cycles

2. G is connected and has n-1 edges (where n = |V|)

3. G is connected, and the remove of any single edge disconnects G

4. G has no cycles, and the addition of any single edge creates a cycle
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Tree Definitions are Equivalent
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
Proof: 
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Tree Definitions are Equivalent (cont. )
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
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Bipartite Graphs
A graph G is bipartite if the vertices can be split in two groups (L or R) and 
edges only go between groups.

G is bipartite iff G is two colorable
Examples: 
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Planar Graphs
A graph is called planar if it can be drawn in the plane without any edges 
crossing. 
Examples:
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Euler’s Formula: v - e + f = 2
Theorem: If G is a connected planar graph, then v - e + f = 2. 
Proof: 
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Euler’s Formula Corollary: e ≤ 3v - 6 
Corollary: For a connected planar graph with v ≥ 3, we have e ≤ 3v - 6
Proof: 
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K5 is non-planar
Proof:
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K3,3 is non-planar
Proof:
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Kuratowski’s Theorem
Theorem: A graph is non-planar iff it contains K5 or K3,3
Example: 
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Hypercubes
The vertex set of a n-dimensional hypercube G=(V, E) is given by V = {0, 1}n

i.e. the vertices are n-bit strings. 
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Number of Edges in Hypercubes
Lemma: The total number of edges in an n-dimensional hypercube is n2n-1

Proof: 
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